363 research outputs found

    Phase diagram of the lattice Wess-Zumino model from rigorous lower bounds on the energy

    Full text link
    We study the lattice N=1 Wess-Zumino model in two dimensions and we construct a sequence ρ(L)\rho^{(L)} of exact lower bounds on its ground state energy density ρ\rho, converging to ρ\rho in the limit LL\to\infty. The bounds ρ(L)\rho^{(L)} can be computed numerically on a finite lattice with LL sites and can be exploited to discuss dynamical symmetry breaking. The transition point is determined and compared with recent results based on large-scale Green Function Monte Carlo simulations with good agreement.Comment: 32 pages, 12 figure

    Global dynamics above the ground state for the nonlinear Klein-Gordon equation without a radial assumption

    Full text link
    We extend our previous result on the focusing cubic Klein-Gordon equation in three dimensions to the non-radial case, giving a complete classification of global dynamics of all solutions with energy at most slightly above that of the ground state.Comment: 40 page

    Ground and excited states Gamow-Teller strength distributions of iron isotopes and associated capture rates for core-collapse simulations

    Full text link
    This paper reports on the microscopic calculation of ground and excited states Gamow-Teller (GT) strength distributions, both in the electron capture and electron decay direction, for 54,55,56^{54,55,56}Fe. The associated electron and positron capture rates for these isotopes of iron are also calculated in stellar matter. These calculations were recently introduced and this paper is a follow-up which discusses in detail the GT strength distributions and stellar capture rates of key iron isotopes. The calculations are performed within the framework of the proton-neutron quasiparticle random phase approximation (pn-QRPA) theory. The pn-QRPA theory allows a microscopic \textit{state-by-state} calculation of GT strength functions and stellar capture rates which greatly increases the reliability of the results. For the first time experimental deformation of nuclei are taken into account. In the core of massive stars isotopes of iron, 54,55,56^{54,55,56}Fe, are considered to be key players in decreasing the electron-to-baryon ratio (YeY_{e}) mainly via electron capture on these nuclide. The structure of the presupernova star is altered both by the changes in YeY_{e} and the entropy of the core material. Results are encouraging and are compared against measurements (where possible) and other calculations. The calculated electron capture rates are in overall good agreement with the shell model results. During the presupernova evolution of massive stars, from oxygen shell burning stages till around end of convective core silicon burning, the calculated electron capture rates on 54^{54}Fe are around three times bigger than the corresponding shell model rates. The calculated positron capture rates, however, are suppressed by two to five orders of magnitude.Comment: 18 pages, 12 figures, 10 table

    First- principle calculations of magnetic interactions in correlated systems

    Full text link
    We present a novel approach to calculate the effective exchange interaction parameters based on the realistic electronic structure of correlated magnetic crystals in local approach with the frequency dependent self energy. The analog of ``local force theorem'' in the density functional theory is proven for highly correlated systems. The expressions for effective exchange parameters, Dzialoshinskii- Moriya interaction, and magnetic anisotropy are derived. The first-principle calculations of magnetic excitation spectrum for ferromagnetic iron, with the local correlation effects from the numerically exact QMC-scheme is presented.Comment: 17 pages, 3 Postscript figure

    Bosonic representation of one-dimensional Heisenberg ferrimagnets

    Get PDF
    The energy structure and the thermodynamics of ferrimagnetic Heisenberg chains of alternating spins S and s are described in terms of the Schwinger bosons and modified spin waves. In the Schwinger representation, we average the local constraints on the bosons and diagonalize the Hamiltonian at the Hartree-Fock level. In the Holstein-Primakoff representation, we optimize the free energy in two different ways introducing an additional constraint on the staggered magnetization. A new modified spin-wave scheme, which employs a Lagrange multiplier keeping the native energy structure free from temperature and thus differs from the original Takahashi Scheme, is particularly stressed as an excellent language to interpret one-dimensional quantum ferrimagnetism. Other types of one-dimensional ferrimagnets and the antiferromagnetic limit S=s are also mentioned.Comment: to be published in Phys. Rev. B 69, No. 6, 0644XX (2004

    DDW Order and its Role in the Phase Diagram of Extended Hubbard Models

    Full text link
    We show in a mean-field calculation that phase diagrams remarkably similar to those recently proposed for the cuprates arise in simple microscopic models of interacting electrons near half-filling. The models are extended Hubbard models with nearest neighbor interaction and correlated hopping. The underdoped region of the phase diagram features dx2y2d_{{x^2}-{y^2}} density-wave (DDW) order. In a certain regime of temperature and doping, DDW order coexists with antiferromagnetic (AF) order. For larger doping, it coexists with dx2y2d_{{x^2}-{y^2}} superconductivity (DSC). While phase diagrams of this form are robust, they are not inevitable. For other reasonable values of the coupling constants, drastically different phase diagrams are obtained. We comment on implications for the cuprates.Comment: 7 pages, 3 figure

    Status of a Supersymmetric Flavour Violating Solution to the Solar Neutrino Puzzle with Three Generations

    Full text link
    We present a general study of a three neutrino flavour transition model based on the supersymmetric interactions which violate R-parity. These interactions induce flavour violating scattering reactions between solar matter and neutrinos. The model does not contain any vacuum mass or mixing angle for the first generation neutrino. Instead, the effective mixing in the first generation is induced via the new interactions. The model provides a natural interpretation of the atmospheric neutrino anomaly, and is consistent with reactor experiments. We determine all R-parity violating couplings which can contribute to the effective neutrino oscillations, and summarize the present laboratory bounds. Independent of the specific nature of the (supersymmetric) flavour violating model, the experimental data on the solar neutrino rates and the recoil electron energy spectrum are inconsistent with the theoretical predictions. The confidence level of the χ2\chi^2-analysis ranges between 104\sim 10^{-4} and 103\sim 10^{-3}. The incompatibility, is due to the new SNO results, and excludes the present model. We conclude that a non-vanishing vacuum mixing angle for the first generation neutrino is necessary in our model. We expect this also to apply to the solutions based on other flavour violating interactions having constraints of the same order of magnitude.Comment: 17 pages, Latex fil

    Weak noise approach to the logistic map

    Full text link
    Using a nonperturbative weak noise approach we investigate the interference of noise and chaos in simple 1D maps. We replace the noise-driven 1D map by an area-preserving 2D map modelling the Poincare sections of a conserved dynamical system with unbounded energy manifolds. We analyze the properties of the 2D map and draw conclusions concerning the interference of noise on the nonlinear time evolution. We apply this technique to the standard period-doubling sequence in the logistic map. From the 2D area-preserving analogue we, in addition to the usual period-doubling sequence, obtain a series of period doubled cycles which are elliptic in nature. These cycles are spinning off the real axis at parameters values corresponding to the standard period doubling events.Comment: 22 pages in revtex and 8 figures in ep

    Ground state of the three-band Hubbard model

    Full text link
    The ground state of the two-dimensional three-band Hubbard model in oxide superconductors is investigated by using the variational Monte Carlo method. The Gutzwiller-projected BCS and spin- density wave (SDW) functions are employed in the search for a possible ground state with respect to dependences on electron density. Antiferromagnetic correlations are considerably enhanced near half-filling. It is shown that the d-wave state may exist away from half-filling for both the hole and electron doping cases. The overall structure of the phase diagram obtained by the calculations qualitatively agrees with experimental indications. The superconducting condensation energy is in reasonable agreement with the experimental value obtained from specific heat and critical magnetic field measurements for optimally doped samples. The inhomogeneous SDW state is also examined near 1/8-hole doping.Comment: 10 pages, 17 figure

    Lattice Pseudospin Model for ν=1\nu=1 Quantum Hall Bilayers

    Full text link
    We present a new theoretical approach to the study of ν=1\nu=1 quantum Hall bilayer that is based on a systematic mapping of the microscopic Hamiltonian to an anisotropic SU(4) spin model on a lattice. To study the properties of this model we generalize the Heisenberg model Schwinger boson mean field theory (SBMFT) of Arovas and Auerbach to spin models with anisotropy. We calculate the temperature dependence of experimentally observable quantities, including the spin magnetization, and the differential interlayer capacitance. Our theory represents a substantial improvement over the conventional Hartree-Fock picture which neglects quantum and thermal fluctuations, and has advantages over long-wavelength effective models that fail to capture important microscopic physics at all realistic layer separations. The formalism we develop can be generalized to treat quantum Hall bilayers at filling factor ν=2\nu=2.Comment: 26 pages, 10 figures. The final version, to appear in PR
    corecore